12 research outputs found

    Defending with Errors: Approximate Computing for Robustness of Deep Neural Networks

    Full text link
    Machine-learning architectures, such as Convolutional Neural Networks (CNNs) are vulnerable to adversarial attacks: inputs crafted carefully to force the system output to a wrong label. Since machine-learning is being deployed in safety-critical and security-sensitive domains, such attacks may have catastrophic security and safety consequences. In this paper, we propose for the first time to use hardware-supported approximate computing to improve the robustness of machine-learning classifiers. We show that successful adversarial attacks against the exact classifier have poor transferability to the approximate implementation. Surprisingly, the robustness advantages also apply to white-box attacks where the attacker has unrestricted access to the approximate classifier implementation: in this case, we show that substantially higher levels of adversarial noise are needed to produce adversarial examples. Furthermore, our approximate computing model maintains the same level in terms of classification accuracy, does not require retraining, and reduces resource utilization and energy consumption of the CNN. We conducted extensive experiments on a set of strong adversarial attacks; We empirically show that the proposed implementation increases the robustness of a LeNet-5, Alexnet and VGG-11 CNNs considerably with up to 50% by-product saving in energy consumption due to the simpler nature of the approximate logic.Comment: arXiv admin note: substantial text overlap with arXiv:2006.0770

    Code-Bridged Classifier (CBC): A Low or Negative Overhead Defense for Making a CNN Classifier Robust Against Adversarial Attacks

    Full text link
    In this paper, we propose Code-Bridged Classifier (CBC), a framework for making a Convolutional Neural Network (CNNs) robust against adversarial attacks without increasing or even by decreasing the overall models' computational complexity. More specifically, we propose a stacked encoder-convolutional model, in which the input image is first encoded by the encoder module of a denoising auto-encoder, and then the resulting latent representation (without being decoded) is fed to a reduced complexity CNN for image classification. We illustrate that this network not only is more robust to adversarial examples but also has a significantly lower computational complexity when compared to the prior art defenses.Comment: 6 pages, Accepted and to appear in ISQED 202
    corecore